COMPUTATIONAL METHODS IN PYTHON. BOOK ONE
Abstract and keywords
Abstract (English):
This textbook is a basic Python programming course, designed for students beginning to learn programming. The textbook consistently presents the basic concepts and syntactic structures of Python, supported by practical examples of program code and a block of exercises to consolidate programming skills. This manual is based on lectures and seminars that the authors conducted at MGIMO University as part of the following courses: Fundamentals of Programming, Modern Programming Languages and Python Programming Fundamentals. Recommended for students majoring in Economics, Business Analytics, Management, Law, and Business Administration, as well as teachers who want to master the Python programming language to solve professional problems and integrate it into the educational process.

Keywords:
Programming, Computational Methods, Practical code examples, Programming exercises, Data visualization, Python, NumPy, Pandas, Matplotlib, Seaborn
References

1. NumPy Developers. NumPy Documentation. — 2025. — URL: https://numpy.org/doc/stable/ (data obrascheniya: 01.02.2025).

2. Pandas Development Team. Pandas Documentation. — 2025. — URL: https://pandas.pydata.org/docs/ (data obrascheniya: 01.02.2025).

3. Project Jupyter. Project Jupyter Documentation. — 2025. — URL: https ://docs.jupyter.org/ (data obrascheniya: 01.02.2025).

4. Python Software Foundation. Index of Python Enhancement Proposals (PEPs). — 2025. — URL: https : / / peps . python . org/ (data obrascheniya:01.02.2025).

5. Python Software Foundation. Python Documentation. — 2025. — URL: https://docs.python.org/3/ (data obrascheniya: 01.02.2025).

6. Python Software Foundation. The Python Standard Library. — 2025. — URL:https://docs.python.org/3/library/ (data obrascheniya: 01.02.2025).

7. Rossum G. van, Warsaw B., Coghlan N. PEP 8 – Style Guide for Python Code. — 2001. — URL: https://peps.python.org/pep-0008/ (data obrascheniya: 01.02.2025).

8. Berman K. Osnovy Python dlya Data Science. — Sankt-Peterburg : Piter, 2023. — S. 272.

9. Vasil'ev A. N. Programmirovanie na Python v primerah i zadachah. —Moskva : Eksmo, 2021. — S. 616.

10. Garafutdinov R. V. Python dlya analiza dannyh : uchebnoe posobie. — Perm' : Permskiy gosudarstvennyy nacional'nyy issledovatel'skiy universitet, 2024. — S. 276.

11. Makkinni U. Python i analiz dannyh. — 3-e izd. — Moskva : DMK Press, 2023. — S. 536.

12. Pashaver B. Pandas v deystvii. — Sankt-Peterburg : Piter, 2025. — S. 512.

13. Pas D. V. Python dlya slozhnyh zadach. Nauka o dannyh i mashinnoe obuchenie. — Sankt-Peterburg : Piter, 2022. — S. 576.

14. Sammerfil'd M. Programmirovanie na Python 3. Podrobnoe rukovodstvo. — Moskva : Simvol-Plyus, 2009. — S. 608.

15. Sysoeva M. V., Sysoev I. V. Programmirovanie dlya «normal'nyh» s nulya na yazyke Python: uchebnik: v dvuh chastyah / pod red. V. L. Chernogo. — 2-e izd., ispr. i dop. — Moskva : Bazal't SPO ; MAKS Press, 2023. — S. 184+184. — (Biblioteka ALT).

Login or Create
* Forgot password?